ACCU-GUARD SERIES LGA/SMD
THIN-FILM FUSE
Table of Contents

Accu-Guard®

Introduction ... 1
- ACCU-GUARD® TECHNOLOGY.. 1
- FEATURES .. 1
- DIMENSIONS.. 1
- HOW TO ORDER.. 1
- APPLICATIONS.. 1
- APPROVAL FILE NUMBERS .. 1

Accu-Guard® II Low Current

LGA Miniature 0402 and 0603 Size Thin-Film Fuses ... 2
- ELECTRICAL SPECIFICATIONS.. 2
- ENVIRONMENTAL CHARACTERISTICS ... 2
- RECOMMENDED PAD LAYOUT .. 2
- FUSE TIME – CURRENT CHARACTERISTICS .. 3
- FUSE PRE-ARC JOULE INTEGRALS VS CURRENT .. 4
- FUSE PRE-ARC JOULE INTEGRALS VS PRE-ARC TIME ... 5

Accu-Guard® II

SMD Thin-Film Fuse ... 6
- ELECTRICAL SPECIFICATIONS.. 6
- ENVIRONMENTAL CHARACTERISTICS ... 7

Lead-Free SMD Thin-Film Fuse

.. 8
- FUSE TIME – CURRENT CHARACTERISTICS FOR TYPE F0402E (TYPICAL) .. 8
- FUSE PRE-ARC JOULE INTEGRALS VS CURRENT FOR TYPE F0402E (TYPICAL) .. 9
- FUSE PRE-ARC JOULE INTEGRALS VS PRE-ARC TIME FOR TYPE F0402E (TYPICAL) 10
- FUSE TIME – CURRENT CHARACTERISTICS FOR TYPE F0603E (TYPICAL) .. 11
- FUSE PRE-ARC JOULE INTEGRALS VS CURRENT FOR TYPE F0603E (TYPICAL) 12
- FUSE PRE-ARC JOULE INTEGRALS VS PRE-ARC TIME FOR TYPE F0603E (TYPICAL) 13

SMD Thin-Film Fuse

.. 14
- FUSE TIME – CURRENT CHARACTERISTICS FOR TYPE F0603C (TYPICAL)* 14
- FUSE PRE-ARC JOULE INTEGRALS VS CURRENT FOR TYPE F0603C (TYPICAL)* 15
- FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPE F0603C (TYPICAL)* 16
- FUSE TIME – CURRENT CHARACTERISTICS FOR TYPES F0805B AND F1206B (TYPICAL) 17
- FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT TIME FOR TYPES F0805B AND F1206B (TYPICAL) 18
- FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPES F0805B AND F1206B (TYPICAL) 19
- FUSE TIME – CURRENT CHARACTERISTICS FOR TYPE F0612D (TYPICAL)* 20
- FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPE F0612D (TYPICAL)* 21

Accu-Guard® Type 1206A*

SMD Thin-Film Fuse ... 23
- ELECTRICAL SPECIFICATIONS.. 23
- ENVIRONMENTAL CHARACTERISTICS ... 23
- FUSE TIME – CURRENT CHARACTERISTICS FOR SIZE 1206 (TYPICAL) .. 24
- FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT FOR SIZE 1206 (TYPICAL) 25
- FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR SIZE 1206 (TYPICAL) 26

*Not recommended for new designs, please contact factory
Accu-Guard Series

LGA/SMD Thin-Film Fuse

Table of Contents

Accu-Guard®

- **SMD Thin-Film Fuse Handling and Soldering**
 - QUALITY & RELIABILITY
 - HANDLING AND SOLDERING
 - CIRCUIT BROAD TYPE
 - WAVE SOLDERING
 - COMPONENT PAD DESIGN
 - PREHEAT & SOLDERING
 - HAND SOLDERING & REWORK
 - COOLING
 - REFLOW SOLDERING
 - RECOMMENDED SOLDERING PROFILES
 - CLEANING RECOMMENDATIONS
 - STORAGE CONDITIONS
 - PACKAGING
 - REEL DIMENSIONS
 - CARRIER DIMENSIONS

Fuse Selection Guide

- HOW TO CHOOSE THE CORRECT ACCU–GUARD FUSE FOR CIRCUIT PROTECTION
- DESIGN PARAMETERS
- DESIGNING FOR CURRENT PULSE SITUATIONS

NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all applications.

© AVX Corporation
Accu-Guard®

Introduction

ACCU–GUARD® TECHNOLOGY
The Accu-Guard® series of fuses is based on thin-film techniques. This technology provides a level of control on the component electrical and physical characteristics that is generally not possible with standard fuse technologies. This has allowed AVX to offer a series of devices which are designed for modern surface mount circuit boards which require protection.

FEATURES
• Accurate current rating
• Fast acting
• Small-standard 0402, 0603, 0805, 1206 and 0612 chip sizes
• Taped and reeled
• Completely compatible with all soldering systems used for SMT
• Lead Free Series (F0402G, F0603G, F0402E, F0603E, F0805B, F1206B)

APPLICATIONS
• Cellular Telephones
• Two-Way Radios
• Computers
• Battery Chargers
• Rechargeable Battery Packs
• Hard Disk Drives
• PDA’s
• LCD Screens
• SCSI Interface
• Digital Cameras
• Video Cameras

APPROVAL FILE NUMBERS
• UL, cUL: RCD#E143842

• Accurate current rating
• Fast acting
• Small-standard 0402, 0603, 0805, 1206 and 0612 chip sizes
• Taped and reeled
• Completely compatible with all soldering systems used for SMT
• Lead Free Series (F0402G, F0603G, F0402E, F0603E, F0805B, F1206B)

DIMENSIONS millimeters (inches)
F0603C, F0805B, F1206A and F1206B

<table>
<thead>
<tr>
<th></th>
<th>F0402G</th>
<th>F0603G</th>
<th>F0402E</th>
<th>F0603E</th>
<th>F0603C</th>
<th>F0805B</th>
<th>F1206A/B</th>
<th>F0612D</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (mm)</td>
<td>1.00±0.05</td>
<td>1.60±0.10</td>
<td>1.00±0.10</td>
<td>1.60±0.10</td>
<td>1.65±0.25</td>
<td>2.10±0.20</td>
<td>3.10±0.20</td>
<td>1.65±0.25</td>
</tr>
<tr>
<td></td>
<td>(0.039±0.002)</td>
<td>(0.063±0.004)</td>
<td>(0.039±0.004)</td>
<td>(0.063±0.004)</td>
<td>(0.065±0.010)</td>
<td>(0.083±0.008)</td>
<td>(0.122±0.008)</td>
<td>(0.065±0.010)</td>
</tr>
<tr>
<td>W (mm)</td>
<td>0.58±0.04</td>
<td>0.81±0.10</td>
<td>0.55±0.07</td>
<td>0.81±0.10</td>
<td>0.80±0.15</td>
<td>1.27±0.10</td>
<td>1.60±1.00</td>
<td>3.10±0.20</td>
</tr>
<tr>
<td></td>
<td>(0.023±0.002)</td>
<td>(0.032±0.004)</td>
<td>(0.022±0.003)</td>
<td>(0.032±0.004)</td>
<td>(0.031±0.006)</td>
<td>(0.050±0.004)</td>
<td>(0.063±0.004)</td>
<td>(0.122±0.008)</td>
</tr>
<tr>
<td>T (mm)</td>
<td>0.35±0.05</td>
<td>0.61±0.10</td>
<td>0.40±0.10</td>
<td>0.63±0.10</td>
<td>0.70±0.15</td>
<td>0.90±0.20</td>
<td>1.20±0.20</td>
<td>0.90±0.20</td>
</tr>
<tr>
<td></td>
<td>(0.014±0.002)</td>
<td>(0.024±0.004)</td>
<td>(0.016±0.004)</td>
<td>(0.025±0.004)</td>
<td>(0.035±0.006)</td>
<td>(0.047±0.008)</td>
<td>(0.036±0.008)</td>
<td>(0.036±0.008)</td>
</tr>
<tr>
<td>B (mm)</td>
<td>0.48±0.05</td>
<td>0.71±0.05</td>
<td>0.20±0.10</td>
<td>0.35±0.15</td>
<td>0.35±0.15</td>
<td>0.30±0.15</td>
<td>0.43±0.25</td>
<td>0.35±0.15</td>
</tr>
<tr>
<td></td>
<td>(0.019±0.002)</td>
<td>(0.028±0.002)</td>
<td>(0.008±0.004)</td>
<td>(0.014±0.006)</td>
<td>(0.014±0.006)</td>
<td>(0.012±0.006)</td>
<td>(0.017±0.010)</td>
<td>(0.014±0.006)</td>
</tr>
<tr>
<td>A (mm)</td>
<td>0.20±0.05</td>
<td>0.28±0.05</td>
<td>0.20±0.10</td>
<td>0.35±0.15</td>
<td>0.35±0.15</td>
<td>0.30±0.15</td>
<td>0.43±0.25</td>
<td>0.35±0.15</td>
</tr>
<tr>
<td></td>
<td>(0.008±0.002)</td>
<td>(0.011±0.002)</td>
<td>(0.008±0.004)</td>
<td>(0.014±0.006)</td>
<td>(0.014±0.006)</td>
<td>(0.012±0.006)</td>
<td>(0.017±0.010)</td>
<td>(0.014±0.006)</td>
</tr>
</tbody>
</table>

HOW TO ORDER

<table>
<thead>
<tr>
<th>F</th>
<th>1206</th>
<th>A</th>
<th>0R20</th>
<th>F</th>
<th>W</th>
<th>TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Fuse Size</td>
<td>Fuse Version</td>
<td>Rated Current</td>
<td>Fuse Speed</td>
<td>Termination</td>
<td>Packaging</td>
</tr>
<tr>
<td>A=Accu-Guard®</td>
<td>B=Accu-Guard® II</td>
<td>C=Accu-Guard® II 0603</td>
<td>D=Accu-Guard® II 0612</td>
<td>E=Accu-Guard® II 0402, 0603</td>
<td>G=Accu-Guard® II Low Current 0402, 0603</td>
<td>S=Nickel/Lead-Free Solder coated (Sn 100), SMD</td>
</tr>
<tr>
<td>A=Accu-Guard®</td>
<td>B=Accu-Guard® II</td>
<td>C=Accu-Guard® II 0603</td>
<td>D=Accu-Guard® II 0612</td>
<td>E=Accu-Guard® II 0402, 0603</td>
<td>G=Accu-Guard® II Low Current 0402, 0603</td>
<td>S=Nickel/Lead-Free Solder coated (Sn 100), SMD</td>
</tr>
</tbody>
</table>

For RoHS compliant products, please select correct termination style.
The new F0402G and F0603G Accu-Guard® series of fuses is based on thin-film technology which allows precise control of the component electrical and physical characteristics that is not possible with standard fuse technologies. The Accu-Guard Low Current series encompasses the lowest current ratings in compact 0402 and 0603 packages and features LGA terminations.

ELECTRICAL SPECIFICATIONS

Operating temperature: -55°C to +125°C

Current carrying capacity:
- -55°C to -11°C 107% of rating
- -10°C to +60°C 100% of rating
- +61°C to +100°C 85% of rating
- +101°C to +125°C 80% of rating

Rated voltage: 63V (F0603G), 32V (F0402G)

Post-fusing resistance: >1MΩ

Interrupt rating: 50A

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Current Rating A</th>
<th>Resistance @0.1 x I rated Ω (max.)</th>
<th>Voltage Drop @ I rated mV (max.)</th>
<th>Fusing Current (within 5 sec) A</th>
<th>Pre-Arc I2t @10x I rated A²·sec (typ)</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0402G0R02FNTR F0603G0R02FNTR</td>
<td>0.028</td>
<td>7.5</td>
<td>290</td>
<td>0.070</td>
<td>6 x 10⁻²</td>
<td>Green</td>
</tr>
<tr>
<td>F0402G0R03FNTR F0603G0R03FNTR</td>
<td>0.0375</td>
<td>4.8</td>
<td>230</td>
<td>0.094</td>
<td>8 x 10⁻⁷</td>
<td>Red</td>
</tr>
<tr>
<td>F0402G0R05FNTR F0603G0R05FNTR</td>
<td>0.050</td>
<td>3.4</td>
<td>250</td>
<td>0.125</td>
<td>2 x 10⁻⁶</td>
<td>Blue</td>
</tr>
<tr>
<td>F0402G0R06FNTR F0603G0R06FNTR</td>
<td>0.062</td>
<td>2.5</td>
<td>280</td>
<td>0.155</td>
<td>2 x 10⁻⁶</td>
<td>Yellow</td>
</tr>
<tr>
<td>F0402G0R07FNTR F0603G0R07FNTR</td>
<td>0.075</td>
<td>2.0</td>
<td>280</td>
<td>0.188</td>
<td>4 x 10⁻⁶</td>
<td>Brown</td>
</tr>
<tr>
<td>F0402G0R10FNTR F0603G0R10FNTR</td>
<td>0.100</td>
<td>2.4</td>
<td>300</td>
<td>0.250</td>
<td>7 x 10⁻⁶</td>
<td>Red</td>
</tr>
<tr>
<td>F0402G0R12FNTR F0603G0R12FNTR</td>
<td>0.125</td>
<td>1.6</td>
<td>250</td>
<td>0.312</td>
<td>1 x 10⁻⁵</td>
<td>White</td>
</tr>
<tr>
<td>F0402G0R15FNTR F0603G0R15FNTR</td>
<td>0.150</td>
<td>1.2</td>
<td>220</td>
<td>0.375</td>
<td>2 x 10⁻⁵</td>
<td>Green</td>
</tr>
<tr>
<td>F0402G0R20FNTR F0603G0R20FNTR</td>
<td>0.200</td>
<td>0.8</td>
<td>210</td>
<td>0.500</td>
<td>4 x 10⁻⁶</td>
<td>Pink</td>
</tr>
</tbody>
</table>

ENVIRONMENTAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Test</th>
<th>Conditions</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solderability</td>
<td>Components completely immersed in a solder bath at 245 ±5°C for 3 secs.</td>
<td>Total area of imperfections in solder coat up to 5% of the land surface area</td>
</tr>
<tr>
<td>Leach Resistance</td>
<td>Components completely immersed in a solder bath at 255 ±5°C for 60 secs.</td>
<td>Dissolution of termination ≤ 15% of the land surface area</td>
</tr>
<tr>
<td>Storage</td>
<td>12 months minimum with components stored in "as received" packaging.</td>
<td>Good solderability</td>
</tr>
<tr>
<td>Shear</td>
<td>Components mounted to a substrate. Increasing shearing force applied parallel to the substrate till destruction.</td>
<td>Destruction at 5N force minimum</td>
</tr>
<tr>
<td>Temperature Cycling</td>
<td>Components mounted to a flexible substrate (e.g. FR – 4). 1000 cycles -55°C to +125°C.</td>
<td>No Visible damage ∆R/R<10%</td>
</tr>
<tr>
<td>Bend</td>
<td>Tested as shown in diagram</td>
<td>No visible damage ∆R/R<10%</td>
</tr>
</tbody>
</table>
FUSE TIME–CURRENT CHARACTERISTICS
FUSE PRE–ARC JOULE INTEGRALS VS PRE–ARC TIME
Accu-Guard® II
SMD Thin-Film Fuse

Accu-Guard® II is a version of Accu-Guard® fuses for a wider range of current and voltage ratings. Constructed on alumina substrates, Accu-Guard® II fuses display superior electrical, mechanical and environmental properties. Accu-Guard® II dimensions are standard 0402, 0603, 0805, 1206 and 0612 chip sizes, see page 2.

ELECTRICAL SPECIFICATIONS

Operating temperature: -55°C to +125°C

Current carrying capacity:
For F0402E and F0603E at -55°C 107% of rating, at +25°C 100% of rating, at +125°C 80% of rating. For F0603C at -55°C is 107% of rating, at +25°C 100% of rating, at +85°C 90% of rating, at +125°C 75% of rating.

Interrupting rating: 50A.
Insulation resistance: >20MΩ guaranteed (after fusing at rated voltage).

For F1206B and F0805B at -55°C is 107% of rating, at +25°C 100% of rating, at +85°C 93% of rating, at +125°C 90% of rating. For F0805B 2.50A and 3.00A at +85°C 90% of rating, at +125°C 90% of rating.

<table>
<thead>
<tr>
<th>Type</th>
<th>Part Number</th>
<th>Current Rating A</th>
<th>Resistance 10% x I rated, 25°C Q (max.)</th>
<th>Voltage Drop @1 x I rated, 25°C mV (max.)</th>
<th>Fusing Current (within 6 sec), 25°C A</th>
<th>Pre-Arc I²t @ 50A A²-sec</th>
<th>Rated Voltage V</th>
</tr>
</thead>
</table>
ENVIRONMENTAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Test</th>
<th>Conditions</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solderability</td>
<td>Components completely immersed in a solder bath at 235 ±5°C for 2 secs.</td>
<td>Terminations to be well tinned</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No visible damage</td>
</tr>
<tr>
<td>Leach Resistance</td>
<td>Completely immersed in a solder bath at 260 ±5°C for 60 secs</td>
<td>Dissolution of termination ≤ 25% of area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔR/R<10%</td>
</tr>
<tr>
<td>Storage</td>
<td>12 months minimum with components stored in “as received” packaging.</td>
<td>Good solderability</td>
</tr>
<tr>
<td>Shear</td>
<td>Components mounted to a substrate. A force of 5N applied normal to the line joining the terminations and in a line parallel to the substrate</td>
<td>No visible damage</td>
</tr>
<tr>
<td>Rapid Change of Temperature</td>
<td>Components mounted to a substrate. 50 cycles -55° to +125°C.</td>
<td>No Visible damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔR/R<10%</td>
</tr>
<tr>
<td>Vibration</td>
<td>Components mounted to substrate. 50 cycles -55°C to +125°C.</td>
<td>No Visible damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔR/R<10%</td>
</tr>
<tr>
<td>Bend</td>
<td>Tested as shown in diagram</td>
<td>No visible damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔR/R<10%</td>
</tr>
<tr>
<td>Load Life F0805B, F1206B</td>
<td>25°C, rated current, 20,000 hrs.</td>
<td>No visible damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ΔR/R<10%</td>
</tr>
</tbody>
</table>
FUSE TIME – CURRENT CHARACTERISTICS FOR TYPE F0402E (TYPICAL)
Accu-Guard® II
Lead-Free SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS CURRENT
FOR TYPE F0402E (TYPICAL)
FUSE PRE-ARC JOULE INTEGRALS VS PRE-ARC TIME
FOR TYPE F0402E (TYPICAL)
FUSE TIME – CURRENT CHARACTERISTICS
FOR TYPE F0603E (TYPICAL)
FUSE PRE-ARC JOULE INTEGRALS VS CURRENT
FOR TYPE F0603E (TYPICAL)
Accu-Guard® II
Lead-Free SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS PRE-ARC TIME
FOR TYPE F0603E (TYPICAL)
FUSE TIME - CURRENT CHARACTERISTICS
FOR TYPE F0603C (TYPICAL)*

*Not recommended for new designs, please contact factory
Accu-Guard® II
SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT FOR TYPE F0603C (TYPICAL)*

*Not recommended for new designs, please contact factory
Accu-Guard® II
SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPE F0603C (TYPICAL)*

*Not recommended for new designs, please contact factory
Accu-Guard® II
SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT TIME FOR TYPES F0805B AND F1206B (TYPICAL)

![Graph showing the relationship between pre-arc joule integrals and current time for Types F0805B and F1206B.](image-url)
FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPES F0805B AND F1206B (TYPICAL)
Accu-Guard® II
SMD Thin-Film Fuse

FUSE TIME - CURRENT CHARACTERISTICS FOR
TYPE F0612D (TYPICAL)*

*Not recommended for new designs, please contact factory
FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPE F0612D (TYPICAL)*

*Not recommended for new designs, please contact factory
FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT FOR TYPE F0612D (TYPICAL)

Not recommended for new designs, please contact factory
Accu-Guard® Type 1206A*
SMD Thin-Film Fuse

ELECTRICAL SPECIFICATIONS

Operating Temperature: -55°C to +125°C
Current carrying capacity at -55°C is 107% of rating;
at +25°C 100% of rating; at +85°C 93% of rating;
at +125°C 90% of rating.
Rated Voltage: 32V
Interrupting Rating: 50A
Insulation Resistance: >20MΩ guaranteed (after fusing at rated voltage)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Current Rating A</th>
<th>Resistance @ 10% x I rated, 25°C Ω (Max.)</th>
<th>Voltage Drop @ 1 x I rated, 25°C mV (Max.)</th>
<th>Fusing Current (within 5 sec.) 25°C A</th>
<th>Pre-Arc I² fot 50A A² - sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1206A0R20FWTR</td>
<td>0.200</td>
<td>0.95</td>
<td>350</td>
<td>0.40</td>
<td>0.00002*</td>
</tr>
<tr>
<td>F1206A0R25FWTR</td>
<td>0.250</td>
<td>0.75</td>
<td>280</td>
<td>0.50</td>
<td>0.00004*</td>
</tr>
<tr>
<td>F1206A0R37FWTR</td>
<td>0.375</td>
<td>0.40</td>
<td>220</td>
<td>0.75</td>
<td>0.00006</td>
</tr>
<tr>
<td>F1206A0R50FWTR</td>
<td>0.500</td>
<td>0.35</td>
<td>220</td>
<td>1.00</td>
<td>0.0002</td>
</tr>
<tr>
<td>F1206A0R75FWTR</td>
<td>0.750</td>
<td>0.25</td>
<td>220</td>
<td>1.50</td>
<td>0.003</td>
</tr>
<tr>
<td>F1206A1R00FWTR</td>
<td>1.000</td>
<td>0.18</td>
<td>220</td>
<td>2.00</td>
<td>0.005</td>
</tr>
<tr>
<td>F1206A1R25FWTR</td>
<td>1.250</td>
<td>0.15</td>
<td>220</td>
<td>2.50</td>
<td>0.009</td>
</tr>
<tr>
<td>F1206A1R50FWTR</td>
<td>1.500</td>
<td>0.11</td>
<td>220</td>
<td>3.00</td>
<td>0.02</td>
</tr>
<tr>
<td>F1206A1R75FWTR</td>
<td>1.750</td>
<td>0.10</td>
<td>210</td>
<td>3.50</td>
<td>0.035</td>
</tr>
<tr>
<td>F1206A2R00FWTR</td>
<td>2.000</td>
<td>0.065</td>
<td>160</td>
<td>4.00</td>
<td>0.04</td>
</tr>
</tbody>
</table>

* Current is limited to less than 50A at 32V due to internal fuse resistance

ENVIRONMENTAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Test</th>
<th>Conditions</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solderability</td>
<td>Components completely immersed in a solder bath at 235 ±5°C for 2 secs.</td>
<td>Terminations to be well tinned No visible damage</td>
</tr>
<tr>
<td>Leach Resistance</td>
<td>Completely immersed in a solder bath at 260 ±5°C for 60 secs.</td>
<td>Dissolution of termination ≤ 25% of area ∆R/R<10%</td>
</tr>
<tr>
<td>Storage</td>
<td>12 months minimum with components stored in “as received” packaging.</td>
<td>Good solderability</td>
</tr>
<tr>
<td>Shear</td>
<td>Components mounted to a substrate. A force of 5N applied normal to the line joining the terminations and in a line parallel to the substrate.</td>
<td>No visible damage</td>
</tr>
<tr>
<td>Rapid Change of Temperature</td>
<td>Components mounted to a substrate. 5 cycles -55°C to +125°C.</td>
<td>No visible damage ∆ R/R<10%</td>
</tr>
<tr>
<td>Vibration</td>
<td>Per Mil-Std-202F Method 201A and Method 204D Condition D.</td>
<td>No visible damage ∆R/R<10%</td>
</tr>
<tr>
<td>Load Life</td>
<td>25°C, I rated, 20,000 hrs.</td>
<td>No visible damage ∆R/R<10%</td>
</tr>
</tbody>
</table>
Accu-Guard® 1206A*
SMD Thin-Film Fuse

FUSE TIME - CURRENT CHARACTERISTICS
FOR SIZE 1206 (TYPICAL)

*Not recommended for new designs, please contact factory
FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT FOR SIZE 1206 (TYPICAL)

*Not recommended for new designs, please contact factory
Accu-Guard® 1206A*
SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR SIZE 1206 (TYPICAL)

*Not recommended for new designs, please contact factory
QUALITY & RELIABILITY

Accu-Guard® series of fuses is based on established thin-film technology and materials used in the semiconductor industry.

- In-line Process Control: This program forms an integral part of the production cycle and acts as a feedback system to regulate and control production processes. The test procedures, which are integrated into the production process, were developed after long research and are based on the highly developed semiconductor industry test procedures and equipment. These measures help AVX/Kyocera to produce a consistent and high yield line of products.

- Final Quality Inspection: Finished parts are tested for standard electrical parameters and visual/mechanical characteristics. Each production lot is 100% evaluated for electrical resistance. In addition, each production lot is evaluated on sample basis for:
 - Insulation resistance (post fusing)
 - Blow time for two times rated current
 - Endurance Test: 125°C, rated current, 4 hours

HANDLING AND SOLDERING

SMD chips should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pick-ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. For automatic equipment, taped and reeled product is the ideal medium for direct presentation to the placement machine.

CIRCUIT BROAD TYPE

All flexible types of circuit boards may be used (e.g. FR-4, G-10).
For other circuit board materials, please consult factory.

WAVE SOLDERING

Dimensions: millimeters (inches)

- 0402
- 0603
- 0805
- 1206
- 0612

COMPONENT PAD DESIGN

Component pads must be designed to achieve good joints and minimize component movement during soldering. Pad designs are given below for both wave and reflow soldering.

The basis of these designs are:
- a. Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this
- b. Pad overlap 0.5mm.
- c. Pad extension 0.5mm for reflow. Pad extension about 1.0mm for wave soldering.

PREHEAT & SOLDERING

The rate of preheat in production should not exceed 4°C/second. It is recommended not to exceed 2°C/second. Temperature differential from preheat to soldering should not exceed 150°C. For further specific application or process advice, please consult AVX

HAND SOLDERING & REWORK

Hand soldering is permissible. Preheat of the PCB to 100°C is required. The most preferable technique is to use hot air soldering tools. Where a soldering iron is used, a temperature controlled model not exceeding 30 watts should be used and set to not more than 260°C. Maximum allowed time at temperature is 1 minute

COOLING

After soldering, the assembly should preferably be allowed to cool naturally. In the event of assisted cooling, similar conditions to those recommended for preheating should be used

REFLOW SOLDERING

Dimensions: millimeters (inches)
RECOMMENDED SOLDERING PROFILES

<table>
<thead>
<tr>
<th>COMPONENTS WITH SnPb TERMINATIONS</th>
<th>LEAD FREE COMPONENTS WITH Sn100 TERMINATIONS</th>
</tr>
</thead>
</table>

CLEANING RECOMMENDATIONS
Care should be taken to ensure that the devices are thoroughly cleaned of flux residues, especially the space beneath the device. Such residues may otherwise become conductive and effectively offer a lousy bypass to the device. Various recommended cleaning conditions (which must be optimized for the flux system being used) are as follows:

- **Cleaning liquids:** i-propanol, ethanol, acetylacetone, water, and other standard PCB cleaning liquids.
- **Ultrasonic conditions:**
 - Power: 20w/liter max.
 - Frequency: 20kHz to 45kHz
- **Temperature:** 80°C maximum (if not otherwise limited by chosen solvent system).
- **TIME:** 5 minutes max.

STORAGE CONDITIONS
Recommended storage conditions for Accu-Guard® prior to use are as follows:
- **Temperature:** 15°C to 35°C
- **Humidity:** ≤65%
- **Air Pressure:** 860mbar to 1060mbar
PACKAGING

Automatic Insertion Packaging
Tape & Reel: All tape and reel specifications are in compliance with EIA 481-1
- 8mm carrier
- Reeled quantities: Reels of 3,000 or 10,000 pieces
 (for F0402: 5,000 or 20,000 pieces)

REEL DIMENSIONS millimeters (inches)

<table>
<thead>
<tr>
<th>A(1)</th>
<th>B*</th>
<th>C</th>
<th>D*</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 + 1.0 (7.087 + 0.039)</td>
<td>1.5 min. (0.059 min.)</td>
<td>13 ± 0.2 (0.512 ± 0.008)</td>
<td>20.2 min. (0.795 min.)</td>
<td>50 min. (1.969 min.)</td>
<td>9.4 ± 1.5 (0.370 ± 0.050)</td>
<td>14.4 max. (0.567 max.)</td>
</tr>
</tbody>
</table>

Metric dimensions will govern.
Inch measurements rounded for reference only.
(1) 330mm (13 inch) reels are available.

CARRIER DIMENSIONS millimeters (inches)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0 ± 0.3 (0.315 ± 0.012)</td>
<td>3.5 ± 0.05 (0.138 ± 0.002)</td>
<td>1.75 ± 0.1 (0.069 ± 0.004)</td>
<td>2.0 ± 0.05 (0.079 ± 0.002)</td>
<td>4.0 ± 0.1 (0.157 ± 0.004)</td>
<td></td>
</tr>
</tbody>
</table>

Note: The nominal dimensions of the component compartment (W,L) are derived from the component size.

Note: AVX reserves the right to change the information published herein without notice.
HOW TO CHOOSE THE CORRECT ACCU–GUARD FUSE FOR CIRCUIT PROTECTION

Correct choice of an Accu-Guard® fuse for a given application is fairly straightforward. The factor of pre-arc I^2t, however, requires clarification. The proper design for pre-arc I^2t is presented by way of example.

DESIGN PARAMETERS

1. **Operating Temperature**
 The Accu-Guard® is specified for operation in the temperature range of -55°C to +125°C. Note, however, that fusing current is sensitive to temperature. This means that the fuse must be derated or uprated at circuit temperatures other than 25°C.

2. **Circuit Voltage**
 Maximum Voltage: Accu-Guard® is specified for circuits of up to rated voltage. Accu-Guard® will successfully break currents at higher voltages as well, but over voltage may crack the fuse body.

 Minimum Voltage: Accu-Guard® cannot be used in circuits with voltage of about 0.5V and less. The internal resistance of the fuse will limit the fault current to a value which will prevent reliable actuation of the fuse ($<2 \times$ rated current).

3. **Maximum Fault Current**
 Accu-Guard® is fully tested and specified for fault currents up to 50A. Accu-Guard® will successfully break currents above 50A, but such current may crack the fuse body or damage the fuse terminations.

4. **Steady-State Current**
 Accu-Guard® is specified to operate at least 4 hours at rated current without fusing (25°C). Engineering tests have shown that F0805B and F1206A/B Accu-Guard® will in fact operate at least 20,000 hours at rated current without fusing (25°C).

5. **Switch-on and Other Pulse Current**
 Many circuits generate a large current pulse when initially connected to power. There are also circuits which are subject to momentary current pulses due to external sources; telephone line cords which are subject to lightning-induced pulses are one example. These current pulses must be passed by the fuse *without* causing actuation. These pulses may be so large that they are the determining factor for choosing the Accu-Guard® current rating; not necessarily steady state current.

 In order to design for current pulses, the concept of fuse pre-arc Joule integral, I^2t, must be understood. Fuse current rating is defined by the requirement that $2 \times I_0t$ or $2.5 \times I_0t$ (depending on fuse type) will cause actuation in $t<5$ seconds. This rating does not indicate how the fuse will react to very high currents of very short duration. Rather, the fusing characteristic at very high currents is specified by I^2t-t curves (or I^2t-I).

 I^2t expresses the amount of energy required to actuate the fuse. Total I^2t expresses the total energy which will be passed by the fuse until total cessation of current flow. Pre-arc I^2t expresses that energy required to cause large irreversible damage to the fuse element (Total $I^2t = \text{pre-arc } I^2t + \text{arc } I^2t$). If the Joule integral of the switch-on pulse is larger than the fuse pre-arc I^2t, nuisance actuation will occur.

 Pre-arc I^2t of the Accu-Guard® fuses is well characterized; I^2t-t and I^2t-I graphs are in this catalog. The problem is calculating the I^2t of the circuit current pulses. This concept is not familiar to most engineers. Correct calculation of pulse Joule integral and subsequent choice of Accu-Guard® current rating is illustrated by way of the attached examples.

<table>
<thead>
<tr>
<th>Environmental Temperature</th>
<th>F0402G</th>
<th>F0603G</th>
<th>F0402E/F0402D</th>
<th>F0603E</th>
<th>F0805B/F1206A/F1206B</th>
<th>F0805B/F1206B 2.50A & 3.00A</th>
<th>F0603C</th>
<th>F0612D</th>
</tr>
</thead>
<tbody>
<tr>
<td>-55°C to -11°C</td>
<td>1.07 x I_R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10°C to 60°C</td>
<td>I_R</td>
<td>I_R</td>
<td>I_R</td>
<td>I_R</td>
<td>I_R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°C to 100°C</td>
<td>0.85 x I_R</td>
<td>0.93 x I_R</td>
<td>0.90 x I_R</td>
<td>0.90 x I_R</td>
<td>0.80 x I_R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101°C to 125°C</td>
<td>0.80 x I_R</td>
<td>0.90 x I_R</td>
<td>0.90 x I_R</td>
<td>0.75 x I_R</td>
<td>0.75 x I_R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*As a function of nominal rated current, I_R.

HOW TO CHOOSE THE CORRECT ACCU–GUARD FUSE FOR CIRCUIT PROTECTION
DESIGNING FOR CURRENT PULSE SITUATIONS

1. Sine wave current pulse
The Joule integral for sine wave pulse is
\[\frac{(I_{\text{max}})^2 \times t}{2} \]
see Fig. 1a.

Fig. 1a. Sine wave pulse parameters for Joule integral calculation, example #1.

Thus, for the current pulse in Figure 1b, the Joule integral is
\[\frac{(4.8A)^2 \times 7.7 \times 10^{-4} \text{ sec}}{2} = 8.9 \times 10^{-4} \text{ A}^2 \text{ sec} \]

Fig. 1b. Triangular pulse, example #1.

The pulse duration is 7.7μsec. We must find a fuse that can absorb at least \(8.9 \times 10^{-4} \times 2 = 1.8 \times 10^{-3} \\text{A}^2 \text{ sec} \) Joule integral without actuation. According to the \(l^2 t \) graph on page 6, pre-arching Joule integral is 2.3\(\times 10^{-4} \\text{A}^2 \text{sec} \) for the 0.5A fuse, which is slightly more than needed. The next lower rating (0.375A), has only 6\(\times 10^{-5} \\text{A}^2 \text{ sec} \), which is not enough. Therefore, 0.5A fuse should be chosen for this application, see Figure 1c.

2. Triangular current pulse
The Joule integral for triangular pulse is \[\frac{(I_{\text{max}})^2 \times t}{3} \]
see Fig. 2a.

Fig. 2a. Triangular pulse parameters for Joule integral calculation, example #2.

Thus, for the current pulse in Figure 2b, the Joule integral is
\[\frac{(1.5A)^2 \times 3 \times 10^{-3} \text{ sec}}{3} = 2.25 \times 10^{-3} \text{ A}^2 \text{ sec} \]

Fig. 2b. Triangular pulse, example #2.

The pulse duration is 3 msec. In the \(l^2 t \) graph on page 6, pre-arching Joule integral for 3 msec pulse is 4 \(\times 10^{-2} \\text{A}^2 \text{sec} \) for the 0.5A fuse (not enough) and 2 \(\times 10^{-2} \) for the 0.75A fuse (more than enough). Therefore, 0.75A fuse should be chosen for this application, see Figure 2c.

FUSE PRE-ARCING JOULE INTEGRALS
vs. PRE-ARCING TIME

Fig. 1c. Choice of 0.5A fuse, example #1.

- Pre-arching \(l^2 t \)
- Maximum \(l^2 t \) design rule
- \(x \) \(l^2 t \) for sample current pulse

Fig. 2c. Choice of 0.75A fuse, example #2.

- Pre-arching \(l^2 t \)
- Maximum \(l^2 t \) design rule
- \(x \) \(l^2 t \) for sample current pulse
DESIGNING FOR CURRENT PULSE SITUATIONS (CONT.)

3. Trapezoidal current pulse
The Joule integral for a trapezoidal pulse is
\[
\left(\frac{l_{max}^2 + l_{min}^2 + l_{max} \times l_{min}}{3}\right) \times t
\]
see Fig. 3a.

![Fig. 3a. Trapezoidal pulse parameters for Joule integral calculation, example #3](image)

Thus, for current pulse in Figure 3b, the Joule integral is:
\[
\left(\frac{(0.56A)^2 + (1A)^2 + 0.56A \times 1A}{3}\right) \times 3 \times 10^{-3} = 1.9 \times 10^{-2}\text{A}^2\text{sec}
\]

![Fig. 3b. Trapezoidal pulse, example #3](image)

According to the \(l^2t\) graph on page 6, the 0.5A fuse should be chosen for this application, see Figure 3c.

4. Lightning strike
A Lightning strike pulse is shown in Figure 4a. After an initial linear rise, the current declines exponentially.

Joule integral for the linear current rise is calculated as for a triangular pulse, see example #2
The Joule integral for the exponential decline is
\[
l_{max}^2 \times t_{0.5} \times (-1/2ln\ 0.5) = 0.72(l_{max})^2 \times t_{0.5}
\]
Thus, for the sample lightning strike pulse in Figure 4b, the total Joule integral is:
\[
(25A)^2 \times 2 \times 10^{-6}\text{sec} + 0.72 \times (25A)^2 \times 10 \times 10^{-6}\text{sec} = 4.92 \times 10^{-3}\text{A}^2\text{sec}
\]

![Fig. 4a. Lightning pulse parameters for Joule integral calculation, example #4](image)

For practical calculations, the duration of exponential decline may be assumed to be 3\(t_{0.5}\), because within this time 98.5% of the pulse energy is released. Thus, the total pulse duration in this example is 30 \(\mu\text{sec}\), and the 1.25A fuse should be chosen for this application, see Figure 4c.

![Fig. 4b. Lightning strike pulse, example #4.](image)

FUSE PRE-ARCING JOULE INTEGRALS
vs. PRE-ARCING TIME

![Fig. 3c. Choice of 0.75A fuse, example #3.](image)

- Pre-arching \(l^2t\)
- Maximum \(l^2t\) design rule
- \(l^2t\) for sample current pulse

FUSE PRE-ARCING JOULE INTEGRALS
vs. PRE-ARCING TIME

![Fig. 4c. Choice of 0.5A fuse, example #4.](image)

- Pre-arching \(l^2t\)
- Maximum \(l^2t\) design rule
- \(l^2t\) for sample current pulse
DESIGNING FOR CURRENT PULSE SITUATIONS (CONT.)

5. Complex current pulse
If the pulse consists of several waveforms, all of them should be evaluated separately, and then the total Joule integral should be calculated as well.

In Figure 5a, the Joule integral for the first triangle is \((4.67 \times 10^3 A^2 \text{sec})/3 = 2.14 \times 10^{-3} A^2 \text{sec}\) and 0.75A fuse should meet this condition, see Figure 5b.

The Joule integral for the second triangle is \((5.33 \times 10^3 A^2 \text{sec})/3 = 2.55 \times 10^{-3} A^2 \text{sec}\), and 0.75A fuse is suitable for this case also, see Figure 5b. However, for the whole pulse, the Joule integral is \(4.7 \times 10^{-3} A^2 \text{sec}\), and the total duration is 563 μsec. For the 0.75A fuse, the Joule integral is only \(8.6 \times 10^{-3} A^2 \text{sec}\) for this pulse duration, so 1A fuse should be chosen for this application, see Figure 5b.

6. Switch-on pulse and steady-state current
In Figure 6a, the switch-on pulse is a triangle pulse with a \(5.1 \times 10^{-3} A^2 \text{sec}\) Joule integral of 5 msec duration; the 0.75A fuse will meet this requirement, see Figure 6b.

The steady-state current is 0.5A, and 1A fuse is typically recommended to meet the steady-state condition. Based on steady-state current, the 1A fuse should be chosen for this application.