Accu-Guard Series LGA/SMD Thin-Film Fuse
IMPORTANT INFORMATION/DISCLAIMER

All product specifications, statements, information and data (collectively, the “Information”) in this datasheet or made available on the website are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed. All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on AVX’s knowledge of typical operating conditions for such applications, but are not intended to constitute and AVX specifically disclaims any warranty concerning suitability for a specific customer application or use.

ANY USE OF PRODUCT OUTSIDE OF SPECIFICATIONS OR ANY STORAGE OR INSTALLATION INCONSISTENT WITH PRODUCT GUIDANCE VOIDS ANY WARRANTY.

The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by AVX with reference to the use of AVX’s products is given without regard, and AVX assumes no obligation or liability for the advice given or results obtained.

Although AVX designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Unless specifically agreed to in writing, AVX has not tested or certified its products, services or deliverables for use in high risk applications including medical life support, medical device, direct physical patient contact, water treatment, nuclear facilities, weapon systems, mass and air transportation control, flammable environments, or any other potentially life critical uses. Customer understands and agrees that AVX makes no assurances that the products, services or deliverables are suitable for any high-risk uses. Under no circumstances does AVX warrant or guarantee suitability for any customer design or manufacturing process.

Although all product–related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.
Accu-Guard Series

LGA/SMD Thin-Film Fuse

Table of Contents

Accu-Guard®

Introduction ... 1

- ACCU–GUARD® TECHNOLOGY..1
- FEATURES..1
- DIMENSIONS...1
- HOW TO ORDER ...1
- APPLICATIONS..1
- APPROVAL FILE NUMBERS ...1

Accu-Guard® II Low Current

LGA Miniature 0402 and 0603 Size Thin-Film Fuses ... 2

- ELECTRICAL SPECIFICATIONS ..2
- ENVIRONMENTAL CHARACTERISTICS..2
- RECOMMENDED PAD LAYOUT ...2
- FUSE TIME–CURRENT CHARACTERISTICS ..3
- FUSE PRE–ARC JOULE INTEGRALS VS CURRENT..4
- FUSE PRE–ARC JOULE INTEGRALS VS PRE–ARC TIME...5

Accu-Guard® II

SMD Thin-Film Fuse ...6

- ELECTRICAL SPECIFICATIONS ..6
- ENVIRONMENTAL CHARACTERISTICS..7

Lead-Free SMD Thin-Film Fuse .. 8

- FUSE TIME – CURRENT CHARACTERISTICS FOR TYPE F0402E (TYPICAL)8
- FUSE PRE–ARC JOULE INTEGRALS VS CURRENT FOR TYPE F0402E (TYPICAL).................................9
- FUSE PRE–ARC JOULE INTEGRALS VS PRE–ARC TIME FOR TYPE F0402E (TYPICAL)10
- FUSE TIME – CURRENT CHARACTERISTICS FOR TYPE F0603E (TYPICAL)11
- FUSE PRE–ARC JOULE INTEGRALS VS CURRENT FOR TYPE F0603E (TYPICAL)12
- FUSE PRE–ARC JOULE INTEGRALS VS PRE–ARC TIME FOR TYPE F0603E (TYPICAL)13

SMD Thin-Film Fuse .. 14

- FUSE TIME - CURRENT CHARACTERISTICS FOR F0603C (TYPICAL)* ...14
- FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT FOR TYPE F0603C (TYPICAL)*15
- FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPE F0603C (TYPICAL)*16
- FUSE TIME - CURRENT CHARACTERISTICS FOR TYPES F0805B AND F1206B (TYPICAL)17
- FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT TIME FOR TYPES F0805B AND F1206B (TYPICAL) 18
- FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPES F0805B AND F1206B (TYPICAL) 19
- FUSE TIME - CURRENT CHARACTERISTICS FOR TYPE F0612D (TYPICAL)*20
- FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPE F0612D (TYPICAL)*21

Accu-Guard® Type 1206A

SMD Thin-Film Fuse ... 23

- ELECTRICAL SPECIFICATIONS ..23
- ENVIRONMENTAL CHARACTERISTICS..23
- FUSE TIME - CURRENT CHARACTERISTICS FOR SIZE 1206 (TYPICAL) ..24
- FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT FOR SIZE 1206 (TYPICAL)25
- FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR SIZE 1206 (TYPICAL)26

*Not recommended for new designs, please contact factory

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
Accu-Guard Series

LGA/SMD Thin-Film Fuse

Table of Contents

Accu-Guard®

SMD Thin-Film Fuse Handling and Soldering ... 27

- QUALITY & RELIABILITY .. 27
- HANDLING AND SOLDERING ... 27
- CIRCUIT BROAD TYPE ... 27
- WAVE SOLDERING ... 27
- COMPONENT PAD DESIGN .. 27
- PREHEAT & SOLDERING .. 27
- HAND SOLDERING & REWORK.. 27
- COOLING ... 27
- REWORK SOLDERING .. 27
- RECOMMENDED SOLDERING PROFILES .. 28
- CLEANING RECOMMENDATIONS ... 28
- STORAGE CONDITIONS ... 28
- PACKAGING .. 29
- REEL DIMENSIONS ... 29
- CARRIER DIMENSIONS ... 29

Fuse Selection Guide ... 30

- HOW TO CHOOSE THE CORRECT ACCU–GUARD FUSE FOR CIRCUIT PROTECTION .. 30
- DESIGN PARAMETERS.. 30
- DESIGNING FOR CURRENT PULSE SITUATIONS .. 31

NOTICE: Specifications are subject to change without notice. Contact your nearest AVX Sales Office for the latest specifications. All statements, information and data given herein are believed to be accurate and reliable, but are presented without guarantee, warranty, or responsibility of any kind, expressed or implied. Statements or suggestions concerning possible use of our products are made without representation or warranty that any such use is free of patent infringement and are not recommendations to infringe any patent. The user should not assume that all safety measures are indicated or that other measures may not be required. Specifications are typical and may not apply to all applications.

© AVX Corporation
Accu-Guard®

Introduction

ACCU–GUARD® TECHNOLOGY

The Accu-Guard® series of fuses is based on thin-film techniques. This technology provides a level of control on the component electrical and physical characteristics that is generally not possible with standard fuse technologies. This has allowed AVX to offer a series of devices which are designed for modern surface mount circuit boards which require protection.

FEATURES

• Accurate current rating
• Fast acting
• Small-standard 0402, 0603, 0805, 1206 and 0612 chip sizes
• Taped and reeled
• Completely compatible with all soldering systems used for SMT
• Lead Free Series (F0402G, F0603G, F0402E, F0603E, F0805B, F1206B)

APPROVAL FILE NUMBERS

• UL, cUL: RCD#E143842

APPLICATIONS

• Cellular Telephones
• Two-Way Radios
• Computers
• Battery Chargers
• Rechargeable Battery Packs
• Hard Disk Drives
• PDA’s
• LCD Screens
• SCSI Interface
• Digital Cameras
• Video Cameras

For RoHS compliant products, please select correct termination style.

DIMENSIONS millimeters (inches)

F0603C, F0805B, F1206A and F1206B

<table>
<thead>
<tr>
<th>F0402G</th>
<th>F0603G</th>
<th>F0402E</th>
<th>F0603E</th>
<th>F0603C</th>
<th>F0805B</th>
<th>F1206A/B</th>
<th>F0612D</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>1.00±0.05 (0.039±0.002)</td>
<td>1.60±0.10 (0.063±0.004)</td>
<td>1.00±0.05 (0.039±0.004)</td>
<td>1.60±0.10 (0.063±0.004)</td>
<td>1.65±0.25 (0.065±0.010)</td>
<td>2.10±0.20 (0.083±0.008)</td>
<td>3.10±0.20 (0.122±0.008)</td>
</tr>
<tr>
<td>W</td>
<td>0.58±0.04 (0.023±0.002)</td>
<td>0.81±0.10 (0.032±0.004)</td>
<td>0.55±0.07 (0.022±0.003)</td>
<td>0.81±0.10 (0.032±0.004)</td>
<td>0.80±0.15 (0.031±0.006)</td>
<td>1.27±0.10 (0.050±0.004)</td>
<td>1.60±0.10 (0.063±0.004)</td>
</tr>
<tr>
<td>T</td>
<td>0.35±0.05 (0.014±0.002)</td>
<td>0.61±0.10 (0.024±0.004)</td>
<td>0.40±0.10 (0.016±0.004)</td>
<td>0.63±0.10 (0.025±0.004)</td>
<td>0.70±0.15 (0.028±0.006)</td>
<td>0.90±0.2 (0.035±0.008)</td>
<td>1.20±0.20 (0.047±0.008)</td>
</tr>
<tr>
<td>B</td>
<td>0.48±0.05 (0.019±0.002)</td>
<td>0.71±0.05 (0.028±0.002)</td>
<td>0.20±0.10 (0.008±0.004)</td>
<td>0.35±0.15 (0.014±0.006)</td>
<td>0.35±0.15 (0.014±0.006)</td>
<td>0.30±0.15 (0.012±0.006)</td>
<td>0.43±0.25 (0.017±0.010)</td>
</tr>
<tr>
<td>A</td>
<td>0.20±0.05 (0.008±0.002)</td>
<td>0.28±0.05 (0.011±0.002)</td>
<td>0.10±0.05 (0.004±0.002)</td>
<td>0.20±0.10 (0.008±0.004)</td>
<td>0.35±0.15 (0.014±0.006)</td>
<td>0.30±0.15 (0.012±0.006)</td>
<td>0.43±0.25 (0.017±0.010)</td>
</tr>
</tbody>
</table>

HOW TO ORDER

F

Product
Fuse
See table for
standard sizes

1206

Fuse
Version
A=Accu-Guard®
B=Accu-Guard® II
C=Accu-Guard® II 0603
D=Accu-Guard® II 0612
E=Accu-Guard® II 0402, 0603
G=Accu-Guard® II Low Current

0R20

Rated Current
Current expressed in
Amps. Letter R de-
notes decimal point
0.20A=0R20
1.75A=1R75

F

Fuse
Speed
F=Fast

S, H

Shrinkable
Heat Shrink

Termination
S=Nickel/Lead-Free
Solder coated
(Sn 100), SMD
W=Nickel/solder coated
(Sn 63, Pb 37)
Solder Coated (Sn100)
N=Nickel/Lead-Free

Packaging
TR=TAPE and reel

072720
The new F0402G and F0603G Accu-Guard® series of fuses is based on thin-film technology which allows precise control of the component electrical and physical characteristics that is not possible with standard fuse technologies. The Accu-Guard Low Current series encompasses the lowest current ratings in compact 0402 and 0603 packages and features LGA terminations.

ELECTRICAL SPECIFICATIONS

Operating temperature: -55°C to +125°C
Current carrying capacity:
-55°C to -11°C 107% of rating
-10°C to +60°C 100% of rating
+61°C to +100°C 85% of rating
+101°C to +125°C 80% of rating
Rated voltage: 63V (F0603G), 32V (F0402G)
Post-fusing resistance: >1MΩ
Interrupt rating: 50A

ENVIRONMENTAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Test</th>
<th>Conditions</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solderability</td>
<td>Components completely immersed in a solder bath at 245±5°C for 3 secs.</td>
<td>Total area of imperfections in solder coat up to 5% of the land surface area</td>
</tr>
<tr>
<td>Leach Resistance</td>
<td>Components completely immersed in a solder bath at 255±5°C for 60 secs.</td>
<td>Dissolution of termination ≤ 15% of the land surface area</td>
</tr>
<tr>
<td>Storage</td>
<td>12 months minimum with components stored in "as received" packaging.</td>
<td>Good solderability</td>
</tr>
<tr>
<td>Shear</td>
<td>Components mounted to a substrate. Increasing shearing force applied parallel to the substrate till destruction.</td>
<td>Destruction at 5N force minimum</td>
</tr>
<tr>
<td>Temperature Cycling</td>
<td>Components mounted to a flexible substrate (e.g. FR - 4). 1000 cycles -55°C to +125°C.</td>
<td>No Visible damage ΔR/R<10%</td>
</tr>
<tr>
<td>Bend</td>
<td>3 mm Deflection 45mm 45mm</td>
<td>No visible damage ΔR/R<10%</td>
</tr>
</tbody>
</table>

RECOMMENDED PAD LAYOUT

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Current Rating A</th>
<th>Resistance @0.1 x I rated Ω (max.)</th>
<th>Voltage Drop @ I rated mV (max.)</th>
<th>Fusing Current (within 5 sec) A</th>
<th>Pre-Arc I2t @10x I rated A²-sec (typ)</th>
<th>Color Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>F0402G0R02FNTR</td>
<td>0.028</td>
<td>7.5</td>
<td>290</td>
<td>0.070</td>
<td>6 x 10⁻¹</td>
<td>Green</td>
</tr>
<tr>
<td>F0402G0R03FNTR</td>
<td>0.0375</td>
<td>4.8</td>
<td>230</td>
<td>0.094</td>
<td>8 x 10⁻²</td>
<td>Red</td>
</tr>
<tr>
<td>F0402G0R05FNTR</td>
<td>0.050</td>
<td>3.4</td>
<td>250</td>
<td>0.125</td>
<td>2 x 10⁻²</td>
<td>Blue</td>
</tr>
<tr>
<td>F0402G0R06FNTR</td>
<td>0.062</td>
<td>2.5</td>
<td>280</td>
<td>0.155</td>
<td>2 x 10⁻³</td>
<td>Yellow</td>
</tr>
<tr>
<td>F0402G0R07FNTR</td>
<td>0.075</td>
<td>2.0</td>
<td>280</td>
<td>0.188</td>
<td>4 x 10⁻³</td>
<td>Brown</td>
</tr>
<tr>
<td>F0402G0R10FNTR</td>
<td>0.100</td>
<td>2.4</td>
<td>300</td>
<td>0.250</td>
<td>7 x 10⁻⁴</td>
<td>Red</td>
</tr>
<tr>
<td>F0402G0R12FNTR</td>
<td>0.125</td>
<td>1.6</td>
<td>250</td>
<td>0.312</td>
<td>1 x 10⁻⁴</td>
<td>White</td>
</tr>
<tr>
<td>F0402G0R15FNTR</td>
<td>0.150</td>
<td>1.2</td>
<td>220</td>
<td>0.375</td>
<td>2 x 10⁻⁵</td>
<td>Green</td>
</tr>
<tr>
<td>F0402G0R20FNTR</td>
<td>0.200</td>
<td>0.8</td>
<td>210</td>
<td>0.500</td>
<td>4 x 10⁻⁵</td>
<td>Pink</td>
</tr>
</tbody>
</table>
Accu-Guard® II Low Current
LGA Miniature 0402 and 0603 Size Thin-Film Fuses

FUSE TIME–CURRENT CHARACTERISTICS

![FUSE TIME–CURRENT CHARACTERISTICS Graph](image-url)
FUSE PRE–ARC JOULE INTEGRALS VS CURRENT

Pre-Arc I²t, A²sec

Current, Amp

200 mA
150 mA
125 mA
100 mA
75 mA
62 mA
50 mA

28 mA
37.5 mA
Accu-Guard® II Low Current
LGA Miniature 0402 and 0603 Size Thin-Film Fuses

FUSE PRE-ARC JOULE INTEGRALS VS PRE-ARC TIME

Pre-Arc I^2t, A^2sec vs Pre-Arc Time, sec

- 200 mA
- 150 mA
- 125 mA
- 100 mA
- 75 mA
- 62 mA
- 28 mA
- 37.5 mA
- 50 mA

The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.
Accu-Guard® II is a version of Accu-Guard® fuses for a wider range of current and voltage ratings. Constructed on alumina substrates, Accu-Guard® II fuses display superior electrical, mechanical and environmental properties. Accu-Guard® II dimensions are standard 0402, 0603, 0805, 1206 and 0612 chip sizes, see page 2.

ELECTRICAL SPECIFICATIONS

Operating temperature: -55°C to +125°C

Current carrying capacity:
- For F0402E and F0603E at -55°C 107% of rating, at +25°C 100% of rating, at +125°C 80% of rating. For F0603C at -55°C is 107% of rating, at +25°C 100% of rating, at +85°C 90% of rating, at +125°C 75% of rating.
- For F1206B and F0805B at -55°C is 107% of rating, at +25°C 100% of rating, at +85°C 90% of rating, at +125°C 90% of rating.

Interrupting rating: 50A.

Insulation resistance: >20MΩ guaranteed (after fusing at rated voltage).

*Current is limited to less than 50A at 32V due to internal fuse resistance.
ENVIRONMENTAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Test</th>
<th>Conditions</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solderability</td>
<td>Components completely immersed in a solder bath at 235 ±5°C for 2 secs.</td>
<td>Terminations to be well tinned No visible damage</td>
</tr>
<tr>
<td>Leach Resistance</td>
<td>Completely immersed in a solder bath at 260 ±5°C for 60 secs</td>
<td>Dissolution of termination ≤ 25% of area ∆R/R<10%</td>
</tr>
<tr>
<td>Storage</td>
<td>12 months minimum with components stored in "as received" packaging.</td>
<td>Good solderability</td>
</tr>
<tr>
<td>Shear</td>
<td>Components mounted to a substrate. A force of 5N applied normal to the line joining the terminations and in a line parallel to the substrate</td>
<td>No visible damage</td>
</tr>
<tr>
<td>Rapid Change of Temperature</td>
<td>Components mounted to a substrate. 50 cycles -55°C to +125°C.</td>
<td>No Visible damage ∆R/R<10%</td>
</tr>
<tr>
<td>Vibration</td>
<td>Components mounted to substrate. 50 cycles -55°C to +125°C.</td>
<td>No Visible damage ∆R/R<10%</td>
</tr>
<tr>
<td>Vibration</td>
<td>Components mounted to substrate. 50 cycles -55°C to +125°C.</td>
<td>No Visible damage ∆R/R<10%</td>
</tr>
<tr>
<td>Bend</td>
<td>Tested as shown in diagram 45mm 3 mm Deflection 45mm</td>
<td>No visible damage ∆R/R<10%</td>
</tr>
<tr>
<td>Load Life</td>
<td>F0805B, F1206B 25°C, rated current, 20,000 hrs.</td>
<td>No visible damage ∆R/R<10%</td>
</tr>
</tbody>
</table>
Accu-Guard® II
Lead-Free SMD Thin-Film Fuse

FUSE TIME – CURRENT CHARACTERISTICS FOR TYPE F0402E (TYPICAL)
FUSE PRE-ARC JOULE INTEGRALS VS CURRENT FOR TYPE F0402E (TYPICAL)

![Graph showing Pre-Arc Joule Integrals vs Current for Type F0402E (Typical)](image-url)
FUSE PRE-ARC JOULE INTEGRALS VS PRE-ARC TIME FOR TYPE F0402E (TYPICAL)
FUSE TIME – CURRENT CHARACTERISTICS FOR TYPE F0603E (TYPICAL)
Accu-Guard® II
Lead-Free SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS CURRENT FOR
TYPE F0603E (TYPICAL)
Accu-Guard® II
Lead-Free SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS PRE-ARC TIME FOR
TYPE F0603E (TYPICAL)
Accu-Guard® II
SMD Thin-Film Fuse

FUSE TIME - CURRENT CHARACTERISTICS FOR TYPE F0603C (TYPICAL) *

*Not recommended for new designs, please contact factory
Accu-Guard® II
SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT FOR TYPE F0603C (TYPICAL)*

*Not recommended for new designs, please contact factory
FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPE F0603C (TYPICAL)*

*Not recommended for new designs, please contact factory
Accu-Guard® II
SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT TIME FOR TYPES F0805B AND F1206B (TYPICAL)
FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPES F0805B AND F1206B (TYPICAL)
Accu-Guard® II

SMD Thin-Film Fuse

FUSE TIME - CURRENT CHARACTERISTICS FOR TYPE F0612D (TYPICAL)

Not recommended for new designs, please contact factory
FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR TYPE F0612D (TYPICAL) *

*Not recommended for new designs, please contact factory
FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT FOR TYPE F0612D (TYPICAL)

*Not recommended for new designs, please contact factory
Accu-Guard® Type 1206A*
SMD Thin-Film Fuse

ELECTRICAL SPECIFICATIONS
Operating Temperature: -55°C to +125°C
Current carrying capacity at -55°C is 107% of rating;
at +25°C 100% of rating; at +85°C 93% of rating;
at +125°C 90% of rating.
Rated Voltage: 32V
Interrupting Rating: 50A
Insulation Resistance: >20MΩ guaranteed (after fusing at rated voltage)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Current Rating A</th>
<th>Resistance @ 10% x I rated, 25°C Ω (Max.)</th>
<th>Voltage Drop @ 1 x I rated, 25°C mV (Max.)</th>
<th>Fusing Current (within 5 sec.) 25°C A</th>
<th>Pre-Arc I² t @ 50A A² - sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1206A0R20FWTR</td>
<td>0.200</td>
<td>0.95</td>
<td>350</td>
<td>0.40</td>
<td>0.00002*</td>
</tr>
<tr>
<td>F1206A0R25FWTR</td>
<td>0.250</td>
<td>0.75</td>
<td>280</td>
<td>0.50</td>
<td>0.00004*</td>
</tr>
<tr>
<td>F1206A0R37FWTR</td>
<td>0.375</td>
<td>0.40</td>
<td>220</td>
<td>0.75</td>
<td>0.00006</td>
</tr>
<tr>
<td>F1206A0R50FWTR</td>
<td>0.500</td>
<td>0.35</td>
<td>220</td>
<td>1.00</td>
<td>0.0002</td>
</tr>
<tr>
<td>F1206A0R75FWTR</td>
<td>0.750</td>
<td>0.25</td>
<td>220</td>
<td>1.50</td>
<td>0.003</td>
</tr>
<tr>
<td>F1206A1R00FWTR</td>
<td>1.000</td>
<td>0.18</td>
<td>220</td>
<td>2.00</td>
<td>0.005</td>
</tr>
<tr>
<td>F1206A1R25FWTR</td>
<td>1.250</td>
<td>0.15</td>
<td>220</td>
<td>2.50</td>
<td>0.009</td>
</tr>
<tr>
<td>F1206A1R50FWTR</td>
<td>1.500</td>
<td>0.11</td>
<td>220</td>
<td>3.00</td>
<td>0.02</td>
</tr>
<tr>
<td>F1206A1R75FWTR</td>
<td>1.750</td>
<td>0.10</td>
<td>210</td>
<td>3.50</td>
<td>0.035</td>
</tr>
<tr>
<td>F1206A2R00FWTR</td>
<td>2.000</td>
<td>0.065</td>
<td>160</td>
<td>4.00</td>
<td>0.04</td>
</tr>
</tbody>
</table>

*Current is limited to less than 50A at 32V due to internal fuse resistance

ENVIRONMENTAL CHARACTERISTICS

<table>
<thead>
<tr>
<th>Test</th>
<th>Conditions</th>
<th>Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solderability</td>
<td>Components completely immersed in a solder bath at 235 ±5°C for 2 secs.</td>
<td>Terminations to be well tinned, No visible damage</td>
</tr>
<tr>
<td>Leach Resistance</td>
<td>Completely immersed in a solder bath at 260 ±5°C for 60 secs.</td>
<td>Dissolution of termination ≤ 25% of area, ∆R/R<10%</td>
</tr>
<tr>
<td>Storage</td>
<td>12 months minimum with components stored in "as received" packaging.</td>
<td>Good solderability</td>
</tr>
<tr>
<td>Shear</td>
<td>Components mounted to a substrate. A force of 5N applied normal to the line joining the terminations and in a line parallel to the substrate.</td>
<td>No visible damage</td>
</tr>
<tr>
<td>Rapid Change of Temperature</td>
<td>Components mounted to a substrate. 5 cycles -55°C to +125°C.</td>
<td>No visible damage, ∆ R/R<10%</td>
</tr>
<tr>
<td>Vibration</td>
<td>Per Mil-Std-202F Method 201A and Method 204D Condition D.</td>
<td>No visible damage, ∆R/R<10%</td>
</tr>
<tr>
<td>Load Life</td>
<td>25°C, I rated, 20,000 hrs.</td>
<td>No visible damage, ∆R/R<10%</td>
</tr>
</tbody>
</table>
Accu-Guard® 1206A*
SMD Thin-Film Fuse

FUSE TIME - CURRENT CHARACTERISTICS
FOR SIZE 1206 (TYPICAL)

*Not recommended for new designs, please contact factory
Accu-Guard® 1206A*
SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS. CURRENT FOR SIZE 1206 (TYPICAL)

*Not recommended for new designs, please contact factory
Accu-Guard® 1206A*
SMD Thin-Film Fuse

FUSE PRE-ARC JOULE INTEGRALS VS. PRE-ARC TIME FOR SIZE 1206 (TYPICAL)

*Not recommended for new designs, please contact factory
QUALITY & RELIABILITY
Accu-Guard® series of fuses is based on established thin-film technology and materials used in the semiconductor industry.

• In-line Process Control: This program forms an integral part of the production cycle and acts as a feedback system to regulate and control production processes. The test procedures, which are integrated into the production process, were developed after long research and are based on the highly developed semiconductor industry test procedures and equipment. These measures help AVX/Kyocera to produce a consistent and high yield line of products.

• Final Quality Inspection: Finished parts are tested for standard electrical parameters and visual/mechanical characteristics. Each production lot is 100% evaluated for electrical resistance. In addition, each production lot is evaluated on sample basis for:
 • Insulation resistance (post fusing)
 • Blow time for two times rated current
 • Endurance Test: 125°C, rated current, 4 hours

HANDLING AND SOLDERING
SMD chips should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of plastic tipped tweezers or vacuum pick-ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. For automatic equipment, taped and reeled product is the ideal medium for direct presentation to the placement machine.

CIRCUIT BROAD TYPE
All flexible types of circuit boards may be used (e.g. FR-4, G-10). For other circuit board materials, please consult factory.

WAVE SOLDERING
Dimensions: millimeters (inches)

COMPONENT PAD DESIGN
Component pads must be designed to achieve good joints and minimize component movement during soldering. Pad designs are given below for both wave and reflow soldering.

The basis of these designs are:

a. Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this
b. Pad overlap 0.5mm.

c. Pad extension 0.5mm for reflow. Pad extension about 1.0mm for wave soldering.

PREHEAT & SOLDERING
The rate of preheat in production should not exceed 4°C/second. It is recommended not to exceed 2°C/second Temperature differential from preheat to soldering should not exceed 150°C. For further specific application or process advice, please consult AVX.

HAND SOLDERING & REWORK
Hand soldering is permissible. Preheat of the PCB to 100°C is required. The most preferable technique is to use hot air soldering tools. Where a soldering iron is used, a temperature controlled model not exceeding 30 watts should be used and set to not more than 260°C. Maximum allowed time at temperature is 1 minute.

COOLING
After soldering, the assembly should preferably be allowed to cool naturally. In the event of assisted cooling, similar conditions to those recommended for preheating should be used.

REFLOW SOLDERING
Dimensions: millimeters (inches)
CLEANING RECOMMENDATIONS

Care should be taken to ensure that the devices are thoroughly cleaned of flux residues, especially the space beneath the device. Such residues may otherwise become conductive and effectively offer a lousy bypass to the device. Various recommended cleaning conditions (which must be optimized for the flux system being used) are as follows:

Cleaning liquids: i-propanol, ethanol, acetylacetone, water, and other standard PCB cleaning liquids.

Ultrasonic conditions: power - 20w/liter max. frequency - 20kHz to 45kHz
Temperature: 80°C maximum (if not otherwise limited by chosen solvent system).
TIME: 5 minutes max.

STORAGE CONDITIONS

Recommended storage conditions for Accu-Guard® prior to use are as follows:
Temperature: 15°C to 35°C
Humidity: ≤65%
Air Pressure: 860mbar to 1060mbar
PACKAGING

Automatic Insertion Packaging
Tape & Reel: All tape and reel specifications are in compliance with EIA 481-1
- 8mm carrier
- Reeled quantities: Reels of 3,000 or 10,000 pieces
 (for F0402: 5,000 or 20,000 pieces)

REEL DIMENSIONS millimeters (inches)

<table>
<thead>
<tr>
<th>A(1)</th>
<th>B*</th>
<th>C</th>
<th>D*</th>
<th>E</th>
<th>F</th>
<th>G MAX.</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 ± 1.0</td>
<td>1.5 min.</td>
<td>13 ± 0.2</td>
<td>20.2 min.</td>
<td>50 min.</td>
<td>9.4 ± 1.5</td>
<td>14.4 max.</td>
</tr>
<tr>
<td>(7.087 ± 0.039)</td>
<td>(0.059 min.)</td>
<td>(0.512 ± 0.008)</td>
<td>(0.795 min.)</td>
<td>(1.969 min.)</td>
<td>(0.370 ± 0.050)</td>
<td>(0.567 max.)</td>
</tr>
</tbody>
</table>

Metric dimensions will govern.
Inch measurements rounded for reference only.
(1) 330mm (13 inch) reels are available.

CARRIER DIMENSIONS millimeters (inches)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0 ± 0.3</td>
<td>3.5 ± 0.05</td>
<td>1.75 ± 0.1</td>
<td>2.0 ± 0.05</td>
<td>4.0 ± 0.1</td>
<td></td>
</tr>
<tr>
<td>(0.315 ± 0.012)</td>
<td>(0.138 ± 0.002)</td>
<td>(0.069 ± 0.004)</td>
<td>(0.079 ± 0.002)</td>
<td>(0.157 ± 0.004)</td>
<td></td>
</tr>
</tbody>
</table>

Note: The nominal dimensions of the component compartment (W,L) are derived from the component size.
Accu-Guard®
Fuse Selection Guide

HOW TO CHOOSE THE CORRECT ACCU-GUARD FUSE FOR CIRCUIT PROTECTION

Correct choice of an Accu-Guard® fuse for a given application is fairly straightforward. The factor of pre-arc I²t, however, requires clarification. The proper design for pre-arc I²t is presented by way of example.

DESIGN PARAMETERS

1. Operating Temperature
 The Accu-Guard® is specified for operation in the temperature range of -55°C to +125°C. Note, however, that fusing current is sensitive to temperature this means that the fuse must be derated or uprated at circuit temperatures other than 25°C.

2. Circuit Voltage
 Maximum Voltage: Accu-Guard® is specified for circuits of up to rated voltage. Accu-Guard® will successfully break currents at higher voltages as well, but over voltage may crack the fuse body.

 Minimum Voltage: Accu-Guard® cannot be used in circuits with voltage of about 0.5V and less. The internal resistance of the fuse will limit the fault current to a value which will prevent reliable actuation of the fuse (<2 x rated current).

3. Maximum Fault Current
 Accu-Guard® is fully tested and specified for fault currents up to 50A. Accu-Guard® will successfully break currents above 50A, but such current may crack the fuse body or damage the fuse terminations.

4. Steady-State Current
 Accu-Guard® is specified to operate at least 4 hours at rated current without fusing (25°C). Engineering tests have shown that F0805B and F1206A/B Accu-Guard® will in fact operate at least 20,000 hours at rated current without fusing (25°C).

5. Switch-on and Other Pulse Current
 Many circuits generate a large current pulse when initially connected to power. There are also circuits which are subject to momentary current pulses due to external sources; telephone line cords which are subject to lightning-induced pulses are one example. These current pulses must be passed by the fuse without causing actuation. These pulses may be so large that they are the determining factor for choosing the Accu-Guard® current rating; not necessarily steady state current.

 In order to design for current pulses, the concept of fuse pre-arc Joule integral, I²t, must be understood. Fuse rating is defined by the requirement that 2 x Ir or 2.5 x Ir (depending on fuse type) will cause actuation in t<5 seconds. This rating does not indicate how the fuse will react to very high currents of very short duration. Rather, the fusing characteristic at very high currents is specified by I²t-t curves (or I²t-I).

 I²t expresses the amount of energy required to actuate the fuse. Total I²t expresses the total energy which will be passed by the fuse until total cessation of current flow. Pre-arc I²t expresses that energy required to cause large irreversible damage to the fuse element (Total I²t = pre-arc I²t + arc I²t). If the Joule integral of the switch-on pulse is larger than the fuse pre-arc I²t, nuisance actuation will occur.

 In order to choose the proper Accu-Guard® current rating for a given application, it is necessary to calculate the I²t Joule integral of the circuit switch-on and other current pulses and compare them to the Accu-Guard® I²t-t curves. An Accu-Guard® fuse must be chosen such that the pulse I²t is no more than 50% of the pre-arc I²t of the prospective fuse.

 Pre-arc I²t of the Accu-Guard® fuses is well characterized; I²t-t and I²t-I graphs are in this catalog. The problem is calculating the I²t of the circuit current pulses. This concept is not familiar to most engineers. Correct calculation of pulse Joule integral and subsequent choice of Accu-Guard® current rating is illustrated by way of the attached examples.

<table>
<thead>
<tr>
<th>Environmental Temperature</th>
<th>Accu-Guard® Current Carrying Capacity*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F0402G</td>
</tr>
<tr>
<td>-55°C to -11°C</td>
<td>1.07 x I₀</td>
</tr>
<tr>
<td>-10°C to 60°C</td>
<td>I₀</td>
</tr>
<tr>
<td>61°C to 100°C</td>
<td>0.85 x I₀</td>
</tr>
<tr>
<td>101°C to 125°C</td>
<td>0.80 x I₀</td>
</tr>
</tbody>
</table>

*As a function of nominal rated current, I₀.
DESIGNING FOR CURRENT PULSE SITUATIONS

1. Sine wave current pulse
 The Joule integral for sine wave pulse is \(\frac{(I_{max})^2 \times t}{2}\), see Fig. 1a.

 ![Fig. 1a. Sine wave pulse parameters for Joule integral calculation, example #1.](image)

 The pulse duration is 7.7μsec. We must find a fuse that can absorb at least \(8.9 \times 10^{-5} \times 2 = 1.8 \times 10^{-4} A^2\) sec without actuation. According to the \(I^2t\) graph on page 6, pre-arching Joule integral for the 0.5A fuse is 2.3\(\times 10^{-4} A^2\) sec, which is slightly more than needed. The next lower rating (0.375A), has only 6\(\times 10^{-5} A^2\) sec, which is not enough. Therefore, 0.5A fuse should be chosen for this application, see Figure 1c.

2. Triangular current pulse
 The Joule integral for triangular pulse is \(\frac{(I_{max})^2 \times t}{3}\), see Fig. 2a.

 ![Fig. 2a. Triangular pulse parameters for Joule integral calculation, example #2.](image)

 The pulse duration is 3 msec. In the \(I^2t\) graph on page 6, pre-arching Joule integral for 3 msec pulse is 4 \(\times 10^{-3} A^2\) sec for the 0.5A fuse (not enough) and 2 \(\times 10^{-2}\) for the 0.75A fuse (more than enough). Therefore, 0.75A fuse should be chosen for this application, see Figure 2c.
DESIGNING FOR CURRENT PULSE SITUATIONS (CONT.)

3. Trapezoidal current pulse
The Joule integral for a trapezoidal pulse is
\[
\left(\frac{l_{\text{max}}^2 + l_{\text{min}}^2 + l_{\text{max}} \cdot l_{\text{min}}}{3}\right) \cdot t
\]
see Fig. 3a.

Fig. 3a. Trapezoidal pulse parameters for Joule integral calculation, example #3

Thus, for current pulse in Figure 3b, the Joule integral is:
\[
\left(\frac{(0.56A)^2 + (1A)^2 + 0.56A \cdot 1A}{3}\right) \cdot 3 \times 10^{-3}s = 1.9 \times 10^{-3}A^2\text{sec}
\]

Fig. 3b. Trapezoidal pulse, example #3

According to the \(l^2t\) graph on page 6, the 0.5A fuse should be chosen for this application, see Figure 3c.

4. Lightning strike
A Lightning strike pulse is shown in Figure 4a. After an initial linear rise, the current declines exponentially

Fig. 4a. Lightning pulse parameters for Joule integral calculation, example #4

Joule integral for the linear current rise is calculated as for a triangular pulse, see example #2
The Joule integral for the exponential decline is
\[I_{\text{max}}^2 \cdot t_{0.5} \times (-1/2 \ln 0.5) = 0.72(I_{\text{max}})^2 \times t_{0.5}\]
Thus, for the sample lightning strike pulse in Figure 4b, the total Joule integral is:
\[(25A)^2 \times 2 \times 10^{-6}\text{sec}/3 + 0.72 \times (25A)^2 \times 10 \times 10^{-6}\text{sec} = 4.92 \times 10^{-3}A^2\text{sec}\]

Fig. 4b. Lightning strike pulse, example #4.

For practical calculations, the duration of exponential decline may be assumed to be \(3t_{0.5}\), because within this time 98.5% of the pulse energy is released. Thus, the total pulse duration in this example is 30 \(\mu\text{sec}\), and the 1.25A fuse should be chosen for this application, see Figure 4c.

FUSE PRE-ARCING JOULE INTEGRALS
vs. PRE-ARCING TIME

Fig. 3c. Choice of 0.75A fuse, example #3.

Fig. 4c. Choice of 0.5A fuse, example #4.
DESIGNING FOR CURRENT PULSE SITUATIONS (CONT.)

5. Complex current pulse
If the pulse consists of several waveforms, all of them should be evaluated separately, and then the total Joule integral should be calculated as well.

In Figure 5a, the Joule integral for the first triangle is \((4.67A)^2 \times 294 \times 10^{-6}\) sec/3 = 2.14 x 10^{-3} A^2 sec and 0.75A fuse should meet this condition, see Figure 5b.

The Joule integral for the second triangle is \((5.33A)^2 \times 269 \times 10^{-6}\) sec/3 = 2.55 x 10^{-3} A^2 sec, and 0.75A fuse is suitable for this case also, see Figure 5b.

However, for the whole pulse, the Joule integral is 4.7 x 10^{-3} A^2 sec, and the total duration is 563 psec. For the 0.75A fuse, the Joule integral is only 8.6 x 10^{-3} A^2 sec for this pulse duration, so 1A fuse should be chosen for this application, see Figure 5b.

6. Switch-on pulse and steady-state current
In Figure 6a, the switch-on pulse is a triangle pulse with a 5.1 x 10^{-3} A^2 sec Joule integral of 5 msec duration; the 0.75A fuse will meet this requirement, see Figure 6b.

The steady-state current is 0.5A, and 1A fuse is typically recommended to meet the steady-state condition. Based on steady-state current, the 1A fuse should be chosen for this application.